
www.manaraa.com

Tangherloni et al. BMC Bioinformatics (2017) 18:246
DOI 10.1186/s12859-017-1666-0

RESEARCH ARTICLE Open Access

LASSIE: simulating large-scale models of
biochemical systems on GPUs
Andrea Tangherloni1, Marco S. Nobile1,3, Daniela Besozzi1, Giancarlo Mauri1,3 and Paolo Cazzaniga2,3*

Abstract

Background: Mathematical modeling and in silico analysis are widely acknowledged as complementary tools to
biological laboratory methods, to achieve a thorough understanding of emergent behaviors of cellular processes in
both physiological and perturbed conditions. Though, the simulation of large-scale models—consisting in hundreds
or thousands of reactions and molecular species—can rapidly overtake the capabilities of Central Processing Units
(CPUs). The purpose of this work is to exploit alternative high-performance computing solutions, such as Graphics
Processing Units (GPUs), to allow the investigation of these models at reduced computational costs.

Results: LASSIE is a “black-box” GPU-accelerated deterministic simulator, specifically designed for large-scale models
and not requiring any expertise in mathematical modeling, simulation algorithms or GPU programming. Given a
reaction-based model of a cellular process, LASSIE automatically generates the corresponding system of Ordinary
Differential Equations (ODEs), assuming mass-action kinetics. The numerical solution of the ODEs is obtained by
automatically switching between the Runge-Kutta-Fehlberg method in the absence of stiffness, and the Backward
Differentiation Formulae of first order in presence of stiffness. The computational performance of LASSIE are assessed
using a set of randomly generated synthetic reaction-based models of increasing size, ranging from 64 to 8192
reactions and species, and compared to a CPU-implementation of the LSODA numerical integration algorithm.

Conclusions: LASSIE adopts a novel fine-grained parallelization strategy to distribute on the GPU cores all the
calculations required to solve the system of ODEs. By virtue of this implementation, LASSIE achieves up to 92×
speed-up with respect to LSODA, therefore reducing the running time from approximately 1 month down to 8 h
to simulate models consisting in, for instance, four thousands of reactions and species. Notably, thanks to its
smaller memory footprint, LASSIE is able to perform fast simulations of even larger models, whereby the tested
CPU-implementation of LSODA failed to reach termination. LASSIE is therefore expected to make an important
breakthrough in Systems Biology applications, for the execution of faster and in-depth computational analyses of
large-scale models of complex biological systems.

Keywords: Graphics Processing Unit, GPU computing, Reaction-based model, Deterministic simulation, Numerical
integration method, LSODA, Nvidia CUDA, Fine-grained parallelization, Systems biology, Rule-based model

Background
Systems Biology is a multidisciplinary research field
relying on the cross-talk between mathematical, compu-
tational and experimental tools to investigate the func-
tioning of complex biological systems, and to predict
how they might behave in both physiological and per-
turbed conditions. To this aim, different computational

*Correspondence: paolo.cazzaniga@unibg.it
2Department of Human and Social Sciences, University of Bergamo, Piazzale
Sant’Agostino 2, 24129 Bergamo, Italy
3SYSBIO.IT Centre of Systems Biology, Piazza della Scienza 2, 20126 Milano, Italy
Full list of author information is available at the end of the article

methods—e.g., parameter estimation, sensitivity analysis
or reverse engineering [1, 2]—are usually exploited to
define or calibrate the mathematical model that describes
the system of interest. These methods require the exe-
cution of a large number of simulations, each one gen-
erally corresponding to a distinct model structure or
parameterization, that is, to a different set of molec-
ular interactions or to different initializations of the
species amounts and/or reaction constants. As a result,
the computational burden required by these compu-
tational analyses can rapidly overtake the capabilities
of Central Processing Units (CPUs), therefore limiting

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-017-1666-0&domain=pdf
http://orcid.org/0000-0001-7780-0434
mailto: paolo.cazzaniga@unibg.it
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

www.manaraa.com

Tangherloni et al. BMC Bioinformatics (2017) 18:246 Page 2 of 18

in-depth computational investigations to small-scale
models consisting in a few tens of reactions and molecu-
lar species at most. General-purpose Graphics Processing
Units (GPUs) can be exploited to overcome these draw-
backs. Indeed, they are parallel multi-core co-processors
that are drawing an ever-growing attention by the sci-
entific community, since they give access to tera-scale
performances on common workstations (and peta-scale
performances on GPU-equipped supercomputers [3]). As
such, they can markedly decrease the running times
required by traditional CPU-based software, still main-
taining low-costs and energetic efficiency. As a matter of
fact, in the latter years GPUs have been widely adopted as
an alternative approach to classic parallel architectures for
the parallelization of computational methods in Systems
Biology, Computational Biology and Bioinformatics [4].
In this work we propose LASSIE (LArge-Scale SIm-

ulator), a novel GPU-accelerated software designed to
simulate large-scale reaction-basedmodels of cellular pro-
cesses, consisting in hundreds or thousands of reactions
and molecular species. An example of killer-application
of LASSIE would consist in the simulation of rule-based
models according to the so-called indirect methods (see
[5, 6] for more information), especially when some pro-
teins are characterized by multiple phosphorylation sites
or binding domains, a condition that yields a combina-
torial explosion of intermediate chemical complexes and
chemical reactions [7]. We designed LASSIE as a gen-
eral “black-box” tool able to simulate, in principle, any
large-scale reaction-based biochemical system based on
mass-action kinetics (e.g., the ErbB signaling pathways
modeled by Chen et al. [8]), given that the available
GPU memory is sufficient to accommodate the necessary
data structures. However, considering the difficulty in the
manual definition of suchmassivemodels, LASSIEmay be
adopted as an efficient simulation engine for rule-based
modeling tools (e.g., BioNetGen [9], PySB [10], Kappa
[11]). As a matter of fact, rule-based modeling can gen-
erate extremely large-scale systems characterized by very
long simulation times: LASSIE may represent an enabling
tool to prevent the application of advanced computational
investigations of such biological models.
In silico simulations allow to determine the quantita-

tive variation of molecular species amount in time and/or
in space, by exploiting either deterministic, stochastic or
hybrid algorithms [12–14]. In particular, when the con-
centrations of molecular species is high and the effect of
biological noise can be neglected [15], Ordinary Differ-
ential Equations (ODEs) represent the typical modeling
approach for cellular processes. Given a model parame-
terization (i.e., the initial state of the system and the set of
kinetic parameters), the temporal dynamics of the system
can be simulated by solving the ODEs using some numeri-
cal integrator, such as Euler or Runge-Kutta methods [16].

Unfortunately, ODEs can be affected by a well-known
phenomenon named stiffness [17], which occurs when
the system of biochemical reactions is characterized by
two well-separated dynamical modes, determined by fast
and slow reactions, respectively [18]. Stiffness can cause
the step-size of integration algorithms to reach extremely
small values, thus increasing the overall running time.
To solve this issue, advanced integration methods like
LSODA [19] can be exploited, thanks to their capability
of efficiently solving stiff systems. LSODA is able to rec-
ognize when a system is stiff and to dynamically select
between the most appropriate integration algorithm: the
Adams methods [16] in the absence of stiffness, and
the Backward Differentiation Formulae (BDF) [20] other-
wise. Despite the improvement of efficiency granted by
LSODA, the numerical integration of the system of ODEs
can become excessively burdensome when the numbers
of reactions and molecular species increase. LASSIE over-
comes this limitation by distributing over thousands of
GPU cores all the calculations required by the numeri-
cal integration methods it embeds, therefore paving the
way for fast simulations of large-scale and stiff models
of cellular processes. One interesting feature of GPUs is
that they can have different characteristics, both in terms
of resources (e.g., amount of high performance memo-
ries, number of cores) and computing power (e.g., clock
rate). Kernels’ performances transparently scale on differ-
ent GPUs, since they automatically leverage the additional
resources offered by the latest architectures, a character-
istic known as transparent scalability.
Notably, LASSIE was designed to be a “black-box” deter-

ministic simulator, not requiring any expertise in mathe-
matical modeling nor any GPU programming skill. More
precisely, given the formalization of a cellular process
as a reaction-based model [21, 22] and assuming mass-
action kinetics [23, 24], LASSIE proceeds according to
the following workflow: (1) it automatically generates the
system of ODEs—one ODE for each molecular species
occurring in the biochemical system—according to the
biochemical reactions included in the model; (2) it auto-
matically derives the Jacobian matrix, taking advantage of
the symbolic derivation, to apply the BDF; (3) it executes
the numerical integration of the ODEs by automatically
switching between the Runge-Kutta-Fehlberg (RKF) [25]
method in the absence of stiffness and first-order BDF
(also known as Backward Euler method) [20] in pres-
ence of stiffness. We point out that LASSIE is a fully
automatic simulator: the user does not need to enter the
ODEs directly. On the contrary, the input consists in a
set of (parameterized) chemical reactions, specified by
means of text files. The corresponding system of ODEs
is automatically determined according to the mass-action
kinetics, making LASSIE usable without any prior knowl-
edge about ODEs modeling and integration. In order to

www.manaraa.com

Tangherloni et al. BMC Bioinformatics (2017) 18:246 Page 3 of 18

further simplify the execution of simulations, LASSIE is
provided with a user-friendly Graphical User Interface
(Fig. 1), whose functioning is described in Additional
file 1. A comprehensive description of the input files is
provided in Additional file 2.
The computational performances of LASSIE are

assessed by measuring the running time required to
simulate a set of randomly generated synthetic reaction-
based models of increasing size—ranging from 64 to 8192
reactions and species—which is compared to the running
time required by a CPU-implementation of LSODA.
Moreover, we show the accuracy of LASSIE by comparing
its outcome with LSODA outcome for the simulation
of a model of the Ras/cAMP/PKA signal transduction
pathway in S. cerevisiae [26], which is characterized by
stiffness.
We highlight that, in general, the implementation of

computational methods able to fully exploit the peculiar
architecture of GPUs is challenging, since specific pro-
gramming skills are required and a complete algorithm
redesign is often necessary. For instance, the paralleliza-
tion on the GPU cores can rely either on a coarse-grained
or a fine-grained strategy. The first strategy allows to
simultaneously run a massive number of independent
simulations (each one characterized by, e.g., a different
model parameterization); on the contrary, the second
strategy consists in the parallelization of all the calcula-
tions required by a single simulation, an approach that
is more suitable for large-scale models. By virtue of the
novel fine-grained parallelization strategy used to imple-
ment LASSIE, our GPU-powered simulator achieves up to
92× speed-up with respect to LSODA.
Coarse-grained parallelizations of deterministic simula-

tions were presented in [27–29]. The simulators proposed

in these works allow to reach a speed-up ranging from
28× to 86× with respect to the corresponding CPU-
based simulators. Fine-grained parallelizations of stochas-
tic simulations were presented in [30, 31]. Komarov and
D’Souza proposed GPU-ODM [30], a fine-grained sim-
ulator of large-scale models based on the Stochastic
Simulation Algorithm (SSA) [32]. This tool uses special
data structures and functionalities to efficiently distribute
all calculations over the multiple cores of GPUs. These
optimizations allow GPU-ODM to outperform the most
advanced CPU-based implementations of SSA. Komarov
et al. also proposed a GPU-powered fine-grained imple-
mentation of τ -leaping [31], an approximate but accurate
stochastic algorithm that is, in general, faster than SSA
[33]. This tool was shown to be more efficient than its
sequential counterpart in the case of extremely large bio-
chemical networks (i.e., characterized by more than 105
reactions). Notably, to the best of our knowledge, no
examples of fine-grained deterministic simulators, such as
LASSIE, have been proposed so far.
LASSIE was developed using the most widespread

GPU computing library, namely, Nvidia Compute Unified
Device Architecture (CUDA). CUDA allows program-
mers to exploit the GPUs for general-purpose computa-
tional tasks (GPGPU computing). Nevertheless, the direct
porting of an application to the GPU is usually unfeasible,
so that the full exploitation of the computational power
and of the massive parallelism of GPUs still represent
the main challenges of GPGPU computing. To exploit the
CUDA architecture, the programmer implements C/C++
functions (called kernels), which are loaded from the CPU
(the host) to one or more GPUs (the devices), and repli-
cated in many copies named threads. CUDA organizes
threads in three-dimensional structures called blocks,

Fig. 1 LASSIE’s Graphical User Interface that easily allows the user to (i) open a model, (ii) visualize its set of species, reactions and parameters, (iii)
select the output directory, (iv) perform a simulation and (v) graphically represent the corresponding dynamics

www.manaraa.com

Tangherloni et al. BMC Bioinformatics (2017) 18:246 Page 4 of 18

which belong to three-dimensional structures named
grids, as shown in Fig. 2 (left side). CUDA combines the
Single Instruction Multiple Data (SIMD) architecture and
a flexible multi-threading in order to handle any condi-
tional divergence between threads. Figure 2 (right side)
also shows a schematic representation of CUDA’s memory
hierarchy: the global memory (accessible from all threads),
the shared memory (accessible from threads belonging to
the same block), the local memory (each thread has its
registers and arrays) and the constant memory (cached
and read only). The global memory is large (a few GBs)
but suffers from high access latencies; this problem, any-
way, was mitigated thanks to the use of L1 cache since the
introduction of the Fermi architecture. On the contrary,
the constant memory is much smaller (i.e, up to 10 KB for
each multi-processor) but faster than the global memory,
as well as the shared memory (i.e., up to 112 KB for each
multi-processor limited to 48 KB for each block); in par-
ticular, the latter should be exploited as much as possible
in order to obtain the best performances. Though, the size
of the shared memory and its scope restrict the possibility
to use it, as only threads belonging to the same block can
communicate through the shared memory.
Given the peculiar features of CUDA architecture, GPU

programmers should be able to optimize both threads par-
titioning and memory usage, as well as to redesign the

algorithm with appropriate kernels, in order to fully lever-
age the computational power of these multi-core devices.
For instance, in the implementation of LASSIE, the shared
memory is not used because several blocks are exploited
to solve the system of ODEs, and threads do not commu-
nicate data with each other. Moreover, the data structures
employed by LASSIE are larger than the total size of the
shared memory, thus preventing the possibility to exploit
it. In what follows, we show how GPU programming
and CUDA features—including built-in support for vector
types, which extend the standard C data types to vector—
have been exploited to optimize the execution workflow
of LASSIE.
The paper is structured as follows. In the next section

we briefly introduce the formalism of reaction-based
models and provide a general description of LASSIE’s
implementation. Then, we discuss the computational per-
formance of LASSIE, showing the speed-up it achieves
with respect to LSODA for the simulation of reaction-
based models of different sizes. We also analyze how the
number of reactions and the number of species affect
the performances of LASSIE. We conclude the work
with some final remarks about CUDA’s architecture and
LASSIE, proposing future improvements of the simu-
lator. LASSIE is available on the GITHUB repository
https://github.com/aresio/LASSIE.

Fig. 2 Threads and memory hierarchy of CUDA’s architecture. Left side. Thread organization: the host (CPU) launches a single kernel that is executed
in multiple threads on the device (GPU). Threads (red cubes) are organized in three-dimensional structures called blocks (yellow cubes), which belong
to three-dimensional grid (green cube). The programmer must explicitly define the dimensions of blocks and grids. Whenever a kernel is run by the
host, the corresponding grid is created by the device which automatically schedules each block on one free streaming multiprocessor available.
This solution allows a transparent scaling of performances on different devices. Moreover, if the machine is equipped with more than one GPU, it
is also possible to distribute the workload by launching the kernel on each GPU. Right side. Memory hierarchy: in CUDA there are many different
memories with different scopes. Each thread has two different kind of private memory: registers and local memories. Threads belonging to the same
block can communicate through the shared memory, which has low access latency. The global memory suffers from high access latencies but it is
accessible to all threads and it is cached since the introduction of the Fermi architecture. Also the texture and the constant memory are equipped
with a cache as well, and all threads can read from these two memories

https://github.com/aresio/LASSIE

www.manaraa.com

Tangherloni et al. BMC Bioinformatics (2017) 18:246 Page 5 of 18

Methods
LASSIE is designed to be a “black-box” deterministic
simulator, created to be easily used without any GPU
programming or ODEs modeling skills. In this section
we describe how LASSIE allows to perform determin-
istic simulations of large-scale biochemical models, dis-
tributing all required calculations on the cores of the
GPU. It is worth noting that the parallelization strat-
egy exploited by LASSIE represents one of the novel-
ties of this work, and allowed to achieve the remarkable
performance results presented in the next sections. In
particular, LASSIE has been developed to solve systems
of coupled ODEs specified in the form dX

dt = f (t,X),
where X ≡ X(t) represents the vector of concentra-
tion values at time t of all chemical species occurring in
the system.

Reaction-based models and ODEs generation
Reaction-based modeling is a mechanistic, quantitative
and parametric formalism to describe and simulate net-
works of biochemical reactions [22], which was exploited
to analyze different signal transduction pathways (see, e.g.,
[34–39]). A reaction-based model is defined by specify-
ing the set of N molecular species {S1, . . . , SN } and the
set ofM biochemical reactions {R1, . . . ,RM} which appear
in the cellular process under investigation [22]. A generic
reaction is described as follows:

Ri :
N∑

j=1
aijSj

ki−→
N∑

j=1
bijSj, i = 1, . . . ,M, (1)

where aij, bij ∈ N are the stoichiometric coefficients and
ki ∈ R

+ is the kinetic constant associated with Ri.
The set of reactions {R1, . . . ,RM} can be written com-

pactly in the matrix-vector form AS K−→ BS, where
S =[S1 · · · SN]T is the N-dimensional column vec-
tor of molecular species, K =[k1 · · · kM]T is the M-
dimensional column vector of kinetic constants, and
A,B ∈ NM×N are the so-called stoichiometric matri-
ces whose (non-negative) elements [A]i,j and [B]i,j cor-
respond to the stoichiometric coefficients aij and bij of
the reactants and the products of all reactions, respec-
tively. Since a reaction simultaneously involving more
than two reactants has a probability to take place almost
equal to zero, here we consider only first and second-
order reactions (i.e., at most two reactant molecules of
the same or different species can appear in the left hand
side of Eq. 1). For this reason, the matrices A and B
are sparse.
Given an arbitrary reaction-based model and assuming

the law of mass-action [24, 40], it is possible to derive the
corresponding system of coupled ODEs that describes the
variation in time of the species concentrations. Specifi-
cally, by denoting the concentration of species Sj at time

t as Xj, where Xj ∈ R≥0 for j = 1, . . . ,N , the system of
coupled ODEs can be obtained as follows:

dX
dt

= (B − A)T [K ◦ XA] , (2)

where X is the N-dimensional vector of concentration
values at time t (representing the state of the system at
time t), the symbol ◦ denotes the entry-by-entry matrix
multiplication, and XA denotes the vector-matrix expo-
nentiation form [40]. Formally, XA is a M-dimensional
vector whose i-th component is given by XAi1

1 · · ·XAiN
N , for

i = 1, . . . ,M.
We highlight that each ODE appearing in Eq. 2 is a poly-

nomial function, consisting in at least one monomial that
is associated with a specific kinetic constant.

Data structures and CUDAmemory usage
Given a reaction-based model as input, LASSIE automat-
ically generates the systems of ODEs according to Eq. 2
and encodes the matrices A and H = (B − A)T as two
arrays of short4 CUDA vector types, named VA and VH,
respectively.
CUDA vector types are multi-dimensional data ranging

from 1 to 4 components, addressed by .x, .y, .z, and .w.
Since the matrices A andH are sparse, LASSIE uses com-
pressed data structures created by removing all zero ele-
ments from A and H, in order to save memory and avoid
unnecessary readings from the global memory. Namely,
let hji be the element of H at row j and column i, and aij
the element of A at row i and column j, for i = 1, . . . ,M
and j = 1, . . . ,N . For each non-zero element of H, we
store into the .x and .y components of VH the values
j and i, respectively; the .z component of VH is used
to store the element hji, while the .w component stores
the index of the kinetic constant associated with that
monomial. Similarly, for each non-zero element of A, the
.x and .y components of VA contain the values i and j,
respectively. The value aij is stored into the .z component
of VA, while the .w component is left unused. Note that
we exploited the short4 CUDA vector type rather than
the short3 CUDA vector type, because the former is 8-
aligned and requires a single instruction to fetch a whole
entry, while the latter is 2-aligned and thus takes three
memory operations to read each entry. In order to parse
these arrays inside the GPU, we use two additional arrays
of short2 CUDA vector types, named OH and OA, which
store the offsets used to correctly read the entries of the
VH and VA structures, respectively. The .x and .y com-
ponents of each row of OH contain, respectively, the first
index and the last index to access the VH structure. Each
thread uses its own pair of indexes to read the rows of
the VH structure between the first index and the last one.
Similarly, OA stores the indexes that allow to correctly
access the VA structure. Finally, the values of the kinetic

www.manaraa.com

Tangherloni et al. BMC Bioinformatics (2017) 18:246 Page 6 of 18

constants are stored into an array of type double, namedK.
Figure 3 shows an example of the matrix encoding used
in LASSIE.
Thanks to these CUDA structures, we obtain a twofold

performance improvement: (i) at the instruction level, a
single instruction is enough to either load or store a multi-
word vector. So doing, the total instruction latency for a
particular memory transaction is lower and also the bytes
per instruction ratio is higher; (ii) at the memory con-
troller level, by using vector types a transfer request from
a warp has a larger net memory throughput per transac-
tion, yielding a higher bytes per transaction ratio. With a
fewer number of transfer requests, the memory controller
is able to reduce contentions producing a higher overall
memory bandwidth utilization. The only limitation due to
short data type is that indices are limited to 22×8−1, which
means that LASSIE cannot simulate systems larger than
65 536 chemical species and reactions.

Execution workflow and CUDA kernels
Once that the system of ODEs is generated by read-
ing the input files (see Additional file 2) and appro-
priately stored according to the CUDA vector types,
LASSIE solves it by automatically switching between the
Runge-Kutta-Fehlberg (RKF) method [25] in the absence
of stiffness, and the Backward Differentiation Formulae
(BDF) methods [20] in presence of stiffness. The integra-
tion of the systems of ODEs is carried out from an initial
time instant t0, up to a given maximum simulation time
tmax. In order to reproduce the dynamics of the cellular
process described by the ODEs, the concentration values
of the molecular species appearing in the reaction-based
model are saved at specified time steps within the interval
[t0, tmax] (such time steps might correspond, e.g., to the
sampling times of laboratory experiments).
LASSIE’s workflow consists in 6 distinct phases, as rep-

resented in Fig. 4. Note that phases P1, P4 and P6 are

Fig. 3 Example of matrix encoding to automatically generate an ODE using LASSIE. All terms of the polynomial function describing the ODE of
species X1 given at the top of the figure are encoded in the components of the data structures OH , VH, OA , VA and K, as detailed hereby. Notice
that only the data structures components with solid borders are used to automatically generate the ODE; the various terms appearing in the
ODE are represented with corresponding colors in the data structure components. Matrix encoding starts from matrix OH . Each thread j, for
j = 0, . . . ,N − 1, reads the values stored in the .x and .y components of OH (denoted by the lightblue borders). In this example, we consider species
X1 that corresponds to thread 0. Each thread fetches the values in VH, starting from the row indicated by the value stored in the .x component of
OH , up to the row corresponding to the value stored in the .y component. In this example, thread 0 in matrix OH reads the values contained in the
first two rows—i.e., rows 0 and 1—in matrix VH. Each row of VH encodes a monomial of an ODE: the .x component is not used; the .y components
(denoted by green and orange borders) indicate the row numbers of the OA structure that each thread must read; the .z components (red borders)
indicate the sign and the coefficient of the monomial; the .w components (gray borders) indicate the positions of the array K containing the values
of the kinetic constants corresponding to the reactions that the threads are parsing. In this example, the .z and .w components of VH allows to
derive the coefficients −1k1 and +1k2 for the first and the second term of the ODE, respectively. Afterwards, as in the case of OH , each thread
fetches the values in VA, starting from the row indicated by the value stored in the .x component of OA , up to the row corresponding to the value
stored in the .y component of OA . The values stored in the .y (violet and fuchsia borders) and .z (blue and dark green borders) components of VA
correspond to the indexes of the species and the stoichiometric coefficients, respectively, while the .x and .w components of VA are left unused. In
this example, row 0 in matrix OA reads the values stored in rows 0 and 1 (.y and .z components) of matrix VA, generating the factors (X1)1(X2)1 in
the first term of the ODE, while row 1 in matrix OA reads the values stored in row 2 (.y and .z components) of matrix VA, generating the factor (X3)1

in the second term of the ODE. Therefore, in this example, the matrix encoding overall generates the ODE of species X1 consisting in the sum of two
polynomial terms: −k1(X1)1(X2)1 + k2(X3)1

www.manaraa.com

Tangherloni et al. BMC Bioinformatics (2017) 18:246 Page 7 of 18

Fig. 4 Simplified scheme of LASSIE workflow. The data structures used to encode the system of ODEs are generated in phase P1. In phase P2, if the
current simulation time t corresponds to a specified sampling time instant, then the current concentration values of all molecular species are saved;
otherwise, the execution proceeds to the next phase. In phase P3 each thread derives and solves the corresponding ODE by exploiting the RKF
method, while in phase P4 the RKF solutions are verified: (i) if the RKF solutions are rejected, then the integration step-size dt is reduced and phase
P3 is executed again; (ii) if RKF solutions are rejected but the integration step-size dt is too small, then phase P5 is executed and the system of ODEs
is solved using the BDF methods; (iii) if the RKF solutions are accepted, the termination criterion is verified during phase P6 (all phases from P2 on are
iterated until the maximum simulation time tmax is reached)

executed by the host (yellow boxes in Fig. 4), while P2,
P3 and P5 are executed by the device (green boxes in
Fig. 4). Overall, phases P2, P3 and P5 rely on 25 different
lightweight kernels, which were specifically developed to
fully leverage the parallel architecture of the GPU for the
implementation of the aforementioned numerical integra-
tion methods. We describe hereafter the main design and
implementation choices of each phase and their related
CUDA kernels, which result in a novel parallelization
strategy with respect to state-of-the-art methodologies
(see, e.g., [41]).

Phase P1. It implements the generation of all data struc-
tures used to encode the ODEs, as described in the
previous section. This phase is executed on the host.

Phase P2. It is used to sample and save the system
dynamics and it is implemented by means of a single
CUDA kernel (kernel K1). In particular, if the current
simulation time t corresponds to one of the specified sam-
pling time instants, LASSIE saves the concentration values
of (possibly, a subset of) all molecular species into an array

www.manaraa.com

Tangherloni et al. BMC Bioinformatics (2017) 18:246 Page 8 of 18

defined on the GPU. Otherwise, the execution proceeds
to the next phase.

Phase P3. It implements the RKFmethod [42], an explicit
integration algorithm with variable step-size used by each
thread j to solve the j-th ODE, for j = 0, . . . ,N − 1. This
phase is implemented as 9 CUDA kernels.
During this phase, two different approximated states

u(t+dt) andw(t+dt) of the state X(t+dt) of the system
are generated at each step, thanks to the evaluation of six
supplementary values l1, . . . , l6 (see details in Additional
file 3). To evaluate the accuracy of u and w at the current
step-size dt, LASSIE exploits a user-defined vector toler-
ance ε ∈ RN (with εj > 0 for all j = 1, . . . ,N), and two
additional arrays, ER, δ ∈ RN , defined as follows:

ER = |w(t + dt) − u(t + dt)|
dt

, δ = 0.84
(ε

ER

) 1
4 .

(3)

If ERj ≤ εj for all j = 1, . . . ,N , then u is accepted as new
state of the system, that is, X(t + dt) = u(t + dt); other-
wise, the solutions u and w are rejected and recalculated
by using a new step-size. The new step-size is computed
as dt = dt · min{δ1, . . . , δN }, being δ1, . . . , δN the compo-
nents of vector δ (note that the new value of dt has to be
chosen in order to satisfy the requested error tolerance for
all ODEs).
Overall, phase P3 is implemented by means of the fol-

lowing kernels:

• kernel K2: used to evaluate each ODE at the current
state X of the system;

• kernels K3 – K8: each thread j, for j = 0, . . . ,N − 1,
computes the components l1j, . . . , l6j of l1, . . . , l6, by
invoking kernel K2;

• kernel K9: each thread j, for j = 0, . . . ,N − 1,
computes the components wj and uj of the
approximated states u and w, respectively;

• kernel K10: each thread j, for j = 0, . . . ,N − 1,
calculates the components ERj and δj of ER and δ,
respectively.

Phase P4. It is used to verify the RKF solutions calculated
during phase P3 and, accordingly, to choose the next phase
to be executed: (i) if the solutions are rejected and the new
step-size dt is acceptable (that is, dt ≥ εs, for some εs > 0,
e.g., εs = 10−6), phase P3 is executed again exploiting a
smaller step-size dt; (ii) if the solutions are rejected and
the new step-size dt becomes too small (that is, dt < εs),
LASSIE executes phase P5; (iii) if all solutions do not vio-
late the specified RKF-tolerance vector ε, then LASSIE
executes phase P6.

Note that point (ii) implicitly states that the system of
ODEs is considered to be stiff, so that LASSIE automati-
cally switches to phase P5, where BDF methods are used
for the numerical integration. Phase P4 is executed on
the host.

Phase P5. It implements the BDF methods, the most
widely used implicit multi-step numerical integration
algorithms [43]. LASSIE switches to this phase if and only
if the RKF solutions u and w evaluated during phase P4
are rejected, and the RKF step-size dt becomes smaller
than εs.
The general formula for a BDF can be written as

q∑

i=0
αiX(t − ti) = dtβ0f (t,X(t)), (4)

where the coefficients αi (with α0 = 1) and β0 are
chosen according to the order q of BDF [43], and dt is
user-defined. Note that, for q > 6, the absolute stabil-
ity region of the resulting BDF methods is too small and
such BDFs are numerical unstable [44]. Therefore, BDFs
with an order q greater than 6 are not used. Since each
BDF is an implicit method, at each time step it requires
the solution of a nonlinear system of equations, which
can be solved by using the iterative Newton—Raphson
method [45]. This algorithm allows to find successively
better approximations z of the zeros of a real-valued func-
tion f (z) = 0 by using the derivative of f (z), and it is
repeated until a sufficiently accurate value is reached. This
idea can be extended to a system of nonlinear equations,
by using the Jacobian matrix J(t,X(t)) of f (t,X(t)), which
is the matrix of all first-order partial derivatives. Since
the evaluation of the Jacobian matrix at each iteration is
computationally expensive, LASSIE actually exploits: (i)
a modified Newton—Raphson method [46]; (ii) the LU
factorization method [47] (we refer the interested reader
to Additional file 3 for technical details). During phase
P5, the Newton-Raphson method is iterated until a user-
defined maximum number of iterations maxit is reached,
or a sufficiently accurate value is achieved (i.e., smaller
than a user-defined tolerance value εNR).
Overall, phase P5 is implemented by means of the fol-

lowing kernels:

• kernel K11: each thread j, for j = 0, . . . ,N − 1,
derives the j -th row of the Jacobian matrix and
evaluates it on the current state of the system X;

• kernel K12: the Jacobian matrix is transposed in
order to exploit the LU factorization method
(accelerated on GPU by the cuBLAS library [48]);

• kernels K13 – K18: based on the order q of the BDF,
LASSIE invokes one of these kernels (i.e., kernel K13
for q = 1, kernel K14 for q = 2, ..., kernel K18 for

www.manaraa.com

Tangherloni et al. BMC Bioinformatics (2017) 18:246 Page 9 of 18

q = 6) to calculate the known terms of the linear
system;

• kernels K19 –K24: each kernel K(18+q), q = 1, . . . , 6,
performs the calculations of the q-th order BDF;

• kernel K25: it updates the iteration vector needed
to execute the Newton-Raphson method (see
Additional file 3).

Phase P6. It is used to verify the termination criterion: if
the maximum time tmax is reached, then the simulation
ends. On the contrary, the execution iterates from phase
P2. This phase is executed on the host.
All the temporary results computed by LASSIE are

stored on the GPU, since data transfers between the host
and the device are very time consuming. For the same
reason, the output data (i.e., the concentration values
of molecular species sampled at fixed time instants) are
transferred to the host as soon as the whole simulation is
completed.

Results and discussion
In this section we compare the computational perfor-
mance of LASSIE against LSODA [19], which is generally
considered one of the best numerical integration algo-
rithms for deterministic simulations of biological systems,
thanks to its capability of dealing with stiff and non-stiff
systems. In particular, we exploited the LSODA imple-
mentation provided by SciPy library [49] (version 0.15.1),
written in C language. LASSIE was run on a machine
with a GPU Nvidia GeForce Titan GTX, based on the
Kepler architecture and equipped with 2 × 15 stream-
ing multiprocessors for a total of 5760 cores (clock 837
MHz) and a theoretical peak processing power of 1.3
TFLOPS in double precision. Instead, LSODA was run on
GALILEO, a supercomputer created by the Italian con-
sortium CINECA. GALILEO consists of 516 compute
nodes, each one equipped with 2 CPUs octa-core Intel
Xeon Haswell E5-2630 v3 (clock 2.40 GHz) for a total of
8256 cores, and 128 GB of RAM. Each CPU is capable
of about 300 GFLOPS in double precision. In our tests,
we exploited one node with 120 GB of RAM distributed
over 5 cores.
The computational performance was evaluated by simu-

lating a set of synthetic reaction-based models of increas-
ing size, that is, having a number of reactions and species
M × N arbitrarily chosen in the range from 64 × 64
to 8192 × 8192. The models were generated considering
the methodology used in [30, 50], which was modified in
order to randomly sample the initial concentration of each
species with a uniform distribution in the range [0, 1), and
the kinetic constant of each reaction with a logarithmic
distribution in the range [10−8, 1).
For each model sizeM×N , we generated and simulated

30 different synthetic reaction-based models to the aim of

measuring the average running time of both LASSIE and
LSODA. The simulation of each reaction-based model
was performed multiple times, using different settings for
the sampling of the time-series. Specifically, in each rep-
etition, we saved either 10, 50, 100, 500 or 1000 samples
of the system dynamics of all chemical species, at regular
intervals. All simulations were halted at time tmax = 50
(arbitrary units).
All simulations were executed—independently from the

size of the model and the number of samples saved—by
setting the following parameters of LASSIE:

• tolerance of RKF method εj = 10−12, j = 1, . . . ,N ;
• first–order BDF method (q = 1);
• BDF integration step dt = 0.1;
• tolerance of Newton-Raphson method εNR = 10−6;
• maximum number of iterations allowed during each

call of the Newton-Raphson methodmaxit = 104;
• initial integration step of RKF method equal to 10−3;
• tolerance value to switch between RKF and Backward

Euler methods εs = 10−6.

The following parameters of LSODA were used to run the
simulations:

• relative tolerance equal to 10−6;
• absolute tolerance equal to 10−12;
• maximum number of internal steps equal to 104.

Table 1 reports the values of the average running times
(given in seconds) of LSODA and LASSIE, required for
the execution of each set of 30 different synthetic reaction-
based models of size M × N , each time considering
10, 50, 100, 500, 1000 samples of the system dynamics of
all chemical species. The speed-up values achieved by
LASSIE with respect to LSODA are given in Table 1 and
graphically represented in Fig. 5, for each tested case; note
that when the speed-up value is greater than one, LASSIE
is faster than LSODA, and vice versa. The break-even
(blue line in Fig. 5) between the performances of LASSIE
and LSODA is observed when the number of reactions
and chemical species is between 128 and 256. Specifically,
in the case of 256 × 256 model size and 10 samples, the
running time of LSODA is almost twice with respect to
LASSIE: 1.28 s vs. 0.67 s. In particular, we emphasize that
the execution of the simulations for models character-
ized by 4096 reactions and 4096 species with 10 samples
takes, on average, 249.8 s with LSODA and just 2.71 s
with LASSIE, resulting in around 92× speed-up. Further-
more, LASSIE allows the simulation of large-scale models
(e.g., 8192× 8192) thanks to its smaller memory footprint
with respect to LSODA, taking just 14.13 s to simulate the
model characterized by 8192 reactions and 8192 species
with 10 samples. Conversely, the version of LSODA imple-
mented in SciPy library has a high memory footprint

www.manaraa.com

Tangherloni et al. BMC Bioinformatics (2017) 18:246 Page 10 of 18

Ta
b
le

1
A
ve
ra
ge

ru
nn

in
g
tim

e
(in

se
co
nd

s)
of

LS
O
D
A
an
d
LA

SS
IE
–
an
d
co
rr
es
po

nd
in
g
sp
ee
d-
up

va
lu
e
–
re
qu

ire
d
fo
rt
he

ex
ec
ut
io
n
of

th
e
se
to

f3
0
sy
nt
he

tic
re
ac
tio

n-
ba

se
d
m
od

el
s

of
si
ze

M
×

N
(w
ith

M
=

N
),
co
ns
id
er
in
g
10
,5
0,
10
0,
50
0,
10
00

sa
m
pl
es

of
th
e
sy
st
em

dy
na
m
ic
s
of

al
lc
he

m
ic
al
sp
ec
ie
s

10
sa
m
pl
es

50
sa
m
pl
es

10
0
sa
m
pl
es

50
0
sa
m
pl
es

10
00

sa
m
pl
es

M
×

N
LS
O
D
A

LA
SS
IE

Sp
ee
d-
up

LS
O
D
A

LA
SS
IE

Sp
ee
d-
up

LS
O
D
A

LA
SS
IE

Sp
ee
d-
up

LS
O
D
A

LA
SS
IE

Sp
ee
d-
up

LS
O
D
A

LA
SS
IE

Sp
ee
d-
up

64
×

64
0.
25
7

0.
51
9

0.
49
5

0.
28
8

0.
54
1

0.
53
2

0.
22
0

0.
55
7

0.
39
5

0.
30
7

0.
66
5

0.
46
2

0.
30
3

0.
83
9

0.
36
1

12
8

×
12
8

0.
39
3

0.
61
3

0.
64
1

0.
47
3

0.
63
5

0.
74
5

0.
50
7

0.
64
4

0.
78
7

0.
67
4

0.
78
6

0.
85
8

0.
49
8

0.
95
8

0.
52
0

25
6

×
25
6

1.
27
7

0.
66
9

1.
90
9

1.
48
6

0.
69
6

2.
13
5

1.
29
3

0.
72
7

1.
77
9

1.
31
9

0.
90
5

1.
45
6

1.
27
7

1.
12
2

1.
13
8

51
2

×
51
2

4.
31
3

0.
79
2

5.
44
6

4.
62
9

0.
84
1

5.
50
4

4.
55
9

0.
91
5

4.
98
2

4.
30
0

1.
21
5

3.
53
9

4.
66
9

1.
52
6

3.
06
0

10
24

×
10
24

15
.7
53

0.
95
5

16
.4
95

15
.7
07

1.
05
6

14
.8
74

16
.2
01

1.
20
1

13
.4
90

15
.9
82

1.
80
9

8.
83
5

16
.6
47

2.
40
7

6.
91
6

20
48

×
20
48

61
.8
24

1.
66
2

37
.1
99

61
.7
48

1.
98
7

31
.0
76

61
.7
62

2.
39
7

25
.7
66

62
.3
07

3.
72
1

14
.7
45

62
.7
42

5.
47
9

11
.4
51

40
96

×
40
96

24
9.
83
9

2.
71
3

92
.0
90
*

24
8.
23
4

4.
57
1

54
,3
06

24
9.
42
2

5.
66
5

44
.0
29

24
9.
54
6

12
.4
07

20
.1
13

25
4.
41
6

17
.3
93

14
.6
27

81
92

×
81
92

N
A

14
.1
34

N
A

N
A

26
.0
51

N
A

N
A

38
.0
58

N
A

N
A

10
1.
91

N
A

N
A

12
9.
75
5

N
A

* M
ax
im

um
sp
ee
d-
up

va
lu
e

www.manaraa.com

Tangherloni et al. BMC Bioinformatics (2017) 18:246 Page 11 of 18

Fig. 5 Speed-up values (z-axis) achieved by LASSIE with respect to LSODA for the simulation of synthetic models of increasing size, having a number
of reactions and of speciesM × N (x-axis) and characterized by an increasing number of sampling time instants of the system dynamics (y-axis).
When the value of the speed-up is greater than one, LASSIE is faster than LSODA and vice versa

that does not allow to simulate models of this size on
GALILEO, the supercomputer employed to perform the
simulations.
Figure 5 also points out how the number of samples of

the dynamics affects the performances of LASSIE, due to
the different number of accesses to the high-latency global
memory. For instance, the speed-up achieved with the
model characterized by 4096 reactions and 4096 species
decreases to 14.6× with 1000 samples, meaning that the
simulations with 1000 samples are around 6× slower than
the simulations with 10 samples. In models characterized
by 2048 reactions and 2048 species, the speed-up obtained
with 10 samples (37.2×) is around 3× larger compared
to the one achieved with 1000 samples (11.4×), while in
models characterized by 1024 reactions and 1024 species,
the speed-up obtained with 10 samples (16.5×) is around
2× larger compared to the one achieved with 1000 sam-
ples (6.9×). Finally, Fig. 6 shows that the running time
of LASSIE increases with the number of samples, while
LSODA is characterized by an almost constant running
time, irrespective of the number of samples. It is worth
noting that CPU-bound integration methods like LSODA
can be more efficient in the case of small-scale models.
This is due to two concomitant circumstances. On the
one hand, the clock frequency of CPUs is higher than
the clock frequency of GPU (2.4 GHz with respect to 837
MHz, in the case of the hardware used to execute our
tests). On the other hand, the communication and syn-
chronization between threads can introduce a significant
overhead, which is mitigated only when the calculations

are distributed over a relevant number of threads; there-
fore, LASSIE becomes profitable for medium/large-scale
models characterized by hundreds of species. Notably, the
bigger the model, the greater the speed-up.
As an additional test, we investigated whether the rela-

tionship between the number of reactions and the num-
ber of species could affect the overall performances of
LASSIE. As the number of chemical species corresponds
to the number of ODEs, the length of each ODE is roughly
proportional to the number of reactions. Since GPUs have
a lower clock frequency than CPUs (e.g., in the case of
the hardware used for the tests, 837 MHz with respect to
2.4 GHz, respectively), each GPU core is slower than the
CPU core to perform a single instruction1. For this reason,
in order to obtain the highest performances, the calcula-
tions on the GPU should be spread across threads as much
as possible, while the number of operations performed by
each thread should be reduced.
Indeed, as reported in Table 2 and shown in Fig. 7, when

the number of chemical species involved in a model is
greater than the number of reactions, LASSIE achieves
better performances than those obtained in the case of
models with a number of chemical species smaller than
the number of reactions. For instance, considering the
models withM×N equal to 171×512, the running time of
LASSIE is smaller than in the case of the models with size
512 × 171, irrespective of the number of samples of the
system dynamics, thanks to the higher number of threads
that are concurrently launched on the GPU in the first
case. This is in general valid in all cases with the exception

www.manaraa.com

Tangherloni et al. BMC Bioinformatics (2017) 18:246 Page 12 of 18

Fig. 6 Comparison between the average running time required by LASSIE (green bars) and LSODA (red bars) to simulate 30 instances of models
characterized by 128 reactions and 128 species (top), 256 reactions and 256 species (middle), 4096 reactions and 4096 species (bottom), saving
different numbers of sampling time instants of the dynamics. Note that the y-axes are in logarithmic scale

of themodels characterized by 2048 chemical species with
500 and 1000 samples of the system dynamics. Here, the
average running time of LASSIE is greater than in the case
of models with 2048 reactions, since the required number
of accesses to the high-latency global memory of the GPU
impairs the performances of the simulations.
In order to assess the scalability of LASSIE, and of

CUDA applications in general, we executed additional

tests on different GPUs. Figure 8 shows a comparison of
LASSIE’s performance using three different GPU models
(Table 3): a notebook video card (Nvidia GeForce 960M,
red bars), the Nvidia GeForce Titan Z used throughout
the paper (green bars), and a Tesla-class GPU (the Nvidia
K20c, blue bars). To compare the speed-up provided by
these GPUs we generated 30 different synthetic mod-
els (characterized by size M × N equal to 1024 × 1024,

www.manaraa.com

Tangherloni et al. BMC Bioinformatics (2017) 18:246 Page 13 of 18

Table 2 Average running time (in seconds) of LASSIE required for the execution of a set of 30 synthetic reaction-based models of size
M × N (withM �= N), considering 10, 50, 100, 500, 1000 samples of the system dynamics of all chemical species

10 samples 50 samples 100 samples 500 samples 1000 samples

M × N LASSIE LASSIE LASSIE LASSIE LASSIE

171 × 512 0.589 0.623 0.662 0.900 1.149

512 × 171 1.032 1.062 1.087 1.318 1.540

341 × 1024 0.682 0.751 0.828 1.285 1.726

1024 × 341 1.119 1.179 1.220 1.597 1.895

512 × 1024 0.759 0.828 0.941 1.419 1.949

1024 × 512 1.053 1.112 1.192 1.624 1.999

683 × 2048 0.876 1.064 1.310 2.442 3.533

2048 × 683 1.389 1.512 1.664 2.406 3.029

1024 × 2048 1.002 1.201 1.508 2.858 3.889

2048 × 1024 1.317 1.444 1.613 2.614 3.281

2048 × 2048 and 4096 × 4096) and calculated the average
running time.
Our results highlight the importance of two distinct

factors on LASSIE’s performances: the GPU’s clock fre-
quency and the amount of available resources (in this
case, the cores). As a matter of fact, despite the lower
amount of CUDA cores, the GeForce 960M turns out
to be competitive on models of moderately large size
thanks to its higher clock rate, with respect to the Titan
Z and the K20c. When the ODEs largely outnumber
the available cores (e.g., for 4096 reactions and chemical
species), the GeForce 960M is no longer competitive. This
is an example of transparent scalability of CUDA appli-
cations: the threads are automatically distributed over the

available cores, improving the overall performances, with-
out any user intervention. Moreover, as described in the
Background section, threads are organized in blocks that
are scheduled on the available multi-processors. Thanks
to this characteristic, when the overall number of threads
outnumbers the available cores, CUDA automatically cre-
ates a queue of blocks that are scheduled on the streaming
multi-processors as soon as they become available for
computation. Thus, LASSIE can, in principle, simulate any
model on any GPU, as long as there is enough memory to
store the data structures.
The Tesla K20c is characterized by a large amount of

cores that, in the case of 1024 × 1024 models, are fully
exploited only during the simulation of the stiff parts of

Fig. 7 Running time (z-axis) of LASSIE for the simulation of synthetic models of increasing size, having a number of reactions and of speciesM × N
(x-axis), withM �= N, and characterized by an increasing number of sampling time instants of the system dynamics (y-axis)

www.manaraa.com

Tangherloni et al. BMC Bioinformatics (2017) 18:246 Page 14 of 18

Fig. 8 Comparison of the average running times for the simulation of 30 synthetic models characterized by three different sizes, executed with
different GPUs: a notebook GPU Nvidia GeForce 960M (red bars); a Nvidia GeForce Titan Z (green bars); a Tesla-class GPU Nvidia K20c (blue bars)

the dynamics. For the remaining parts of the simulation,
half of its cores are actually used for computation with
a slower clock rate with respect to the clock rate of the
GeForce GPUs. Moreover, Tesla cards exploit Error Cor-
recting Codes (ECC) on memories, ensuring additional
checks of correctness to the data against potential corrup-
tion from electrical or magnetic interference, at the price
of a significant overhead [51]. The ECC was enabled dur-
ing all tests, partly explaining the reduced performance of
the Tesla K20c on very large-scale models with respect to
the Titan Z.
We assessed the accuracy of LASSIE by simulating

the dynamics of the model of the Ras/cAMP/PKA sig-
naling pathway in yeast presented in [26], and com-
paring the outcome of LASSIE with the result of the
simulation performed with LSODA. We also investi-
gated the influence of LASSIE parameters (e.g., toler-
ance values) on the running times and quality of the
simulated solutions, by exploiting a model represent-
ing a chain of isomerizations. The accuracy results—
which show an identical dynamics with respect to
LSODA using default settings—are presented in the
Additional file 4.

As a final remark, we highlight that a fair compari-
son of GPUs and CPUs is a difficult task, in general, due
to their deep architectural differences. The theoretical
peak performances of both architectures are difficult to
achieve: indeed, developers must implement code to the
aim of maximizing the parallelism and the occupancy of
the multi-processors, adhering as much as possible to
the underlying SIMD computational model in the case of
the GPU and exploiting vector instructions in the case
of the CPU. However, GPUs allow the temporary diver-
gence of the execution flow of threads, that is, a part of the
threads can execute different portions of the code (e.g., the
branches of an IF/THEN/ELSE statement). When this sit-
uation occurs, some threads get stalled waiting for recon-
vergence. This mechanism provides the programmer
with a certain degree of freedom to abandon the SIMD
paradigm, but at the same time it can potentially lead to
the complete serialization of the execution affecting the
overall performances. Hence, conditional branches should
be avoided as much as possible. We also highlight that the
usage of registers and sharedmemory influences the occu-
pancy of the GPU, as these resources are scarce on each
streaming multiprocessor. All these circumstances can

Table 3 Nvidia GPUs used to assess the scalability of LASSIE

GeForce GTX 960M GeForce GTX Titan Z Tesla K20c

Global memory 4 GB 6 GB 5 GB

Number of streaming multiprocessors 5 15 13

CUDA cores per streaming multiprocessor 128 192 192

Total number of CUDA cores 640 2880 2496

Base clock 1.2 GHz 876 MHz 706 MHz

www.manaraa.com

Tangherloni et al. BMC Bioinformatics (2017) 18:246 Page 15 of 18

prevent the achievement of the peak computational power
of a GPU.
To this aim, we developed kernels that maximize the

parallelism and the occupancy of the multi-processors
avoiding threads divergence as much as possible. More-
over, we optimized data structures to store the matrices A
and H that encode the system of ODEs, and CUDA vec-
tor types that allow to increase the memory throughput
and to reduce the number of memory accesses, all precau-
tions that explain the performance boost achieved with
LASSIE.

Conclusions
In this work we presented LASSIE, a GPU-powered sim-
ulator of large-scale biochemical systems based on mass-
action kinetics. LASSIE is a “black-box” simulator able
to automatically convert reaction-based models of bio-
logical systems into the corresponding systems of ODEs.
Reaction-based models defined according to the law of
mass-action do not hinge upon the use of any approxi-
mate kinetics functions (e.g., Michaelis-Menten rate law
for enzymatic processes [23], Hill functions for coop-
erative binding [52], etc.), which are frequently used in
Systems Biology for the definition of mathematical mod-
els based on differential equations. Although Michaelis-
Menten kinetics or Hill functions can be useful in bio-
logical modeling, they rely on chemical assumptions that
are valid only in certain conditions [53]. Therefore, the
reason why we rely on mass-action based models is man-
ifold. On the one hand, since the biological function and
biochemical kinetics of all molecular species and all reac-
tions appearing in the model are not approximated nor
lumped together in any way, they can be analyzed inde-
pendently from each other. As a consequence, this allows
to determine the influence of every single species and
reaction on the overall functioning of the system. On the
other hand, the law of mass-action allows to derive a
first order ODE for each species appearing in the model:
it is worth noting that such ODE is a polynomial func-
tion that describes how the concentration of that species
changes in time, according to all the reactions where it
appears either as reactant or product [24]. The presence
of polynomial functions simplifies the symbolic derivation
that is needed to calculate the Jacobian matrix associated
with the ODEs and exploited by the BDF. In addition,
as described in the Methods section, polynomials can
be efficiently encoded in the memory and parsed GPU-
side. As a result, all GPU threads can perform the same
task (i.e., polynomial decoding and evaluation), strongly
reducing warps’ divergence and the consequent stalling
of threads due to serialization, a circumstance that would
instead happen if each thread calculated an ODE charac-
terized by an arbitrary kinetics. In order to solve systems
of ODEs characterized by stiffness, LASSIE automatically

switches between the RKF and the BDF integration meth-
ods. LASSIE’s execution flow is partitioned into 25 CUDA
kernels, overall distributing the calculations over the avail-
able cores in order to fully exploit the massive parallel
capabilities of modern GPUs, therefore achieving a rele-
vant reduction of the running time in case of large-scale
models.
In order to assess the computational performance of

LASSIE, we performed a set of simulation tests using
synthetic reaction-based models of increasing size, and
we compared LASSIE’s running time with respect to the
LSODA numerical integration algorithm implemented
in the SciPy library. The break-even between the per-
formances of LASSIE and LSODA was observed when
both the numbers of reactions and chemical species is in
between 128 and 256. This result indicates that, for bio-
logical systems consisting in more than 256 reactions and
256 species, the GPU-powered simulator becomes more
convenient than the LSODA algorithm running on CPU.
Indeed, in the case of large-scale models, characterized
by 4096 reactions and 4096 species, we obtained a con-
siderable 92× speed-up. Moreover, thanks to its smaller
memory footprint with respect to LSODA, LASSIE allows
the simulation of even larger models, taking just an aver-
age of 14.13 s to simulate models characterized by 8192
reactions and 8192 species. On the contrary, LSODA did
not allow the simulation of models of this size on the
computer we used for the tests, as it crashed because of
its very high memory footprint. We also highlight that
COPASI [54], one of the most used software in Systems
Biology, requires in general longer execution times with
respect to the SciPy implementation of LSODA exploited
in this work. In addition, COPASI fails when trying to
simulate large-scale models. We provide an example of
such model—characterized by 4096 reactions and 4096
species—as SBML file in the GITHUB repository.
BDFs are the most used integration algorithms to

solve systems of ODEs in case of stiffness. The first–
order BDF is a single-step implicit integration method,
meaning that the next state of the system depends only
on the current state of the system. Higher–order BDFs
are multi-step methods, so that the next state of the
system relies on multiple previous states of the sys-
tem (i.e., the number of previous states is equal to the
BDF order). This implies that the integration step-size
should be the same for all previous states to ensure
the correctness of the solution. For this reason, LSODA
uses the multi-step Adams methods as explicit meth-
ods in addition to BDFs. Conversely, LASSIE uses the
RKF method, which is a single-step explicit algorithm
with variable step-size, and the Backward Euler method.
Other single-step implicit methods belonging to the fam-
ily of Runge-Kutta methods exist [55], the most known
being the families of Lobatto and Radau methods [56].

www.manaraa.com

Tangherloni et al. BMC Bioinformatics (2017) 18:246 Page 16 of 18

These methods have been proven to be suitable for
stiff systems, thanks to their accuracy and stability [56].
As a future development of LASSIE, we will investigate
the feasibility and efficacy of replacing the Backward
Euler and, more generally, the BDFs with implicit Runge-
Kutta methods [57], in particular Lobatto and Radau
methods.
In order to fully exploit the CUDA architecture, the

memory hierarchy must be exploited as much as possi-
ble. Because of the peculiar sequential structure of both
explicit and implicit integration algorithms, LASSIE’s ker-
nel are lightweight and rarely reuse any variables. For
this reason, the current implementation only leverages
the global memory (characterized by high latencies) and
registers to manipulate the mutable data. The shared
memory has not been exploited in any way, leaving
room for potential future improvements of performances.
However, on the GPUs where the L1 cache and the
shared memory share the same resources, CUDA allows
to express a preference to assign a larger amount of
memory to the caching mechanisms. This functional-
ity is enabled by default in LASSIE using the CUDA
cudaFuncSetCacheConfig primitive, executed with
the cudaFuncCachePreferL1 argument. Also the
constant memory has not been used, since all data struc-
tures are larger than the total size of this memory. In a
future release, we plan to leverage these memories, for
instance to store the array of the kinetic constants and the
structures containing the offsets used to correctly decode
the ODEs. LASSIE currently exploits only a single GPU,
even on multi-GPU systems; as a future improvement of
this work we plan to extend it in order to support multi-
GPU systems, to further increase the size of the models to
be simulated.
Finally, an additional goal in the development of LASSIE

is to integrate and accelerate the investigation of rule-
based models. In the next future, we plan to develop a
set of tools that will leverage the functionalities offered
by rule-based modeling frameworks [9–11], to convert a
rule-based model into a set of reactions. Although rule-
based tools already provide internal simulation methods
(e.g., PySB allows to perform deterministic simulations
using advanced integrators like LSODA), LASSIE can
represent a valuable alternative for large-scale models,
enabling the investigation of more detailed biological sys-
tems, paving the way to potential new discoveries in Sys-
tems Biology. LASSIE will be also integrated in COSYS, a
free web-based platform for Systems Biology investigation
available at http://www.sysbio.it/cosys [58].

Endnote
1 The advances in GPU’s technology will progressively

reduce this gap. In middle 2016—with the introduction of

the novel Pascal architecture and the 16 nm FinFET man-
ufacturing process—Nvidia presented a GPU with a clock
frequency of 1.7 GHz that, theoretically, is expected to
double LASSIE’s performances.

Additional files

Additional file 1: LASSIE Graphical User Interface. (PDF 397 kb)

Additional file 2: LASSIE input files and command line arguments.
(PDF 221 kb)

Additional file 3: Implementation of CUDA kernels for LASSIE execution
workflow. (PDF 240 kb)

Additional file 4: Simulation accuracy of LASSIE. (PDF 172 kb)

Abbreviations
BDF: Backward Differentiation Formulae; CPU: Central Processing Unit; CUDA:
Compute Unified Device Architecture; ECC: Error Correcting Codes; GPGPU:
General-purpose GPU; GPU: Graphics Processing Unit; LASSIE: LArge-Scale
SImulator; ODE: Ordinary Differential Equation; RKF: Runge-Kutta-Fehlberg;
SIMD: Single Instruction Multiple Data; SSA: Stochastic Simulation Algorithm

Acknowledgements
We acknowledge the CINECA award under the ISCRA initiative, for the
availability of high performance computing resources and support. Authors
would like to thank the SYSBIO.IT Centre of Systems Biology for the support.

Funding
Not applicable.

Availability of data andmaterials
LASSIE is a cross-platform software, i.e., it can be compiled and executed on
the main operating systems: GNU/Linux, Microsoft Windows, Apple OS/X.
LASSIE is written in CUDA, hence it requires a Nvidia GPU, with CUDA version
7.5 or higher. LASSIE’s source files and binary executable files, as well as
examples of reaction-based models, are available on GITHUB: https://github.
com/aresio/LASSIE.

Authors’ contributions
Conceived the idea: MSN. Designed the code: AT, MSN. Implemented the
code and performed the experiments: AT. Analyzed the data: AT, MSN, DB, PC.
Wrote the manuscript: AT, MSN, DB, PC. Critically read the manuscript and
contributed to the discussion of the whole work: GM. All authors read and
approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Department of Informatics, Systems and Communication, University of
Milano-Bicocca, Viale Sarca 336, 20126 Milano, Italy. 2Department of Human
and Social Sciences, University of Bergamo, Piazzale Sant’Agostino 2, 24129
Bergamo, Italy. 3SYSBIO.IT Centre of Systems Biology, Piazza della Scienza 2,
20126 Milano, Italy.

Received: 17 January 2017 Accepted: 30 April 2017

http://www.sysbio.it/cosys
http://dx.doi.org/10.1186/s12859-017-1666-0
http://dx.doi.org/10.1186/s12859-017-1666-0
http://dx.doi.org/10.1186/s12859-017-1666-0
http://dx.doi.org/10.1186/s12859-017-1666-0
https://github.com/aresio/LASSIE
https://github.com/aresio/LASSIE

www.manaraa.com

Tangherloni et al. BMC Bioinformatics (2017) 18:246 Page 17 of 18

References
1. Aldridge BB, Burke JM, Lauffenburger DA, Sorger PK. Physicochemical

modelling of cell signalling pathways. Nat Cell Biol. 2006;8(11):
1195–203.

2. Chou IC, Voit EO. Recent developments in parameter estimation and
structure identification of biochemical and genomic systems. Math Biosci.
2009;219(2):57–83.

3. Joubert W, Archibald R, Berrill M, Brown WM, Eisenbach M, Grout R,
Larkin J, Levesque J, Messer B, Norman M, Philip B, Sankaran R,
Tharrington A, Turner J. Accelerated application development: The ORNL
Titan experience. Comput Electr Eng. 2015;46:123–38.

4. Nobile MS, Cazzaniga P, Tangherloni A, Besozzi D. Graphics processing
units in bioinformatics, computational biology and systems biology. Brief
Bioinform. 2016;2016(bbw058).

5. Chylek LA, Harris LA, Tung CS, Faeder JR, Lopez CF, Hlavacek WS.
Rule-based modeling: a computational approach for studying
biomolecular site dynamics in cell signaling systems. Wiley Interdisci Rev
Syst Biol Med. 2014;6(1):13–36.

6. Chylek LA, Stites EC, Posner RG, Hlavacek WS In: Prokop A, Csukás B,
editors. Innovations of the rule-based modeling approach. Dordrecht:
Springer; 2013. p. 273–300.

7. Blinov ML, Faeder JR, Goldstein B, Hlavacek WS. A network model of
early events in epidermal growth factor receptor signaling that accounts
for combinatorial complexity. Biosystems. 2006;83(2):136–51.

8. Chen WW, Schoeberl B, Jasper PJ, Niepel M, Nielsen UB, Lauffenburger
DA, Sorger PK. Input–output behavior of ErbB signaling pathways as
revealed by a mass action model trained against dynamic data. Mol Syst
Biol. 2009;5(1):239.

9. Blinov ML, Faeder JR, Goldstein B, Hlavacek WS. BioNetGen: software for
rule-based modeling of signal transduction based on the interactions of
molecular domains. Bioinformatics. 2004;20(17):3289–91.

10. Lopez CF, Muhlich JL, Bachman JA, Sorger PK. Programming biological
models in Python using PySB. Mol Syst Biol. 2013;9(1):646.

11. Feret J, Danos V, Krivine J, Harmer R, Fontana W. Internal coarse-graining
of molecular systems. Proc Natl Acad Sci USA. 2009;106(16):6453–458.

12. Wilkinson D. Stochastic modelling for quantitative description of
heterogeneous biological systems. Nat Rev Genet. 2009;10(2):122–33.

13. Székely Jr T, Burrage K. Stochastic simulation in systems biology. Comput
Struct Biotechnol J. 2014;12(20–21):14–25.

14. Harris LA, Clancy P. A “partitioned leaping” approach for multiscale
modeling of chemical reaction dynamics. J Chem Phys. 2006;125(14):
144107.

15. Eldar A, Elowitz MB. Functional roles for noise in genetic circuits. Nature.
2010;467(7312):167–73.

16. Butcher JC. Numerical Methods for Ordinary Differential Equations.
Chichester West Sussex: Wiley; 2008.

17. Higham DJ, Trefethen LN. Stiffness of ODEs. BIT Numer Math. 1993;33(2):
285–303.

18. Gillespie DT. Stochastic simulation of chemical kinetics. Annu Rev Phys
Chem. 2007;58:35–55.

19. Petzold LR. Automatic selection of methods for solving stiff and nonstiff
systems of ordinary differential equations. SIAM J Sci Stat Comp. 1983;4:
136–48.

20. Cash JR. Backward Differentiation Formulae In: Engquist B, editor.
Encyclopedia of Applied and Computational Mathematics. Berlin
Heidelberg: Springer; 2015. p. 97–101.

21. Gillespie DT. A general method for numerically simulating the stochastic
time evolution of coupled chemical reactions. J Comput Phys. 1976;22:
403–34.

22. Besozzi D. Reaction-based models of biochemical networks In:
Beckmann A, Bienvenu L, Jonoska N, editors. Pursuit of the Universal.
12th Conference on Computability in Europe, CiE 2016, Proceedings.
LNCS, vol. 9709. Switzerland: Springer; 2016. p. 24–34.

23. Nelson DL, Cox MM. Lehninger Principles of Biochemistry. New York: W.
H. Freeman Co; 2004.

24. Voit EO, Martens HA, Omholt SW. 150 years of the mass action law. PLoS
Comput Biol. 2015;11(1):1004012.

25. Fehlberg E. Classical fifth-, sixth-, seventh-, and eighth-order Runge-Kutta
formulas with stepsize. NASA Tech Rep R-287, NASA. 1968.

26. Cazzaniga P, Pescini D, Besozzi D, Mauri G, Colombo S, Martegani E.
Modeling and stochastic simulation of the Ras/cAMP/PKA pathway in the

yeast Saccharomyces cerevisiae evidences a key regulatory function for
intracellular guanine nucleotides pools. J Biotechnol. 2008;133(3):377–85.

27. Ackermann J, Baecher P, Franzel T, Goesele M, Hamacher K.
Massively-parallel simulation of biochemical systems. In: Proceedings of
Massively Parallel Computational Biology on GPUs, Jahrestagung der
Gesellschaft Für Informatik e.V; 2009. p. 739–50.

28. Nobile MS, Cazzaniga P, Besozzi D, Mauri G. GPU-accelerated
simulations of mass-action kinetics models with cupSODA. J
Supercomput. 2014;69(1):17–24.

29. Zhou Y, Liepe J, Sheng X, Stumpf MP, Barnes C. GPU accelerated
biochemical network simulation. Bioinformatics. 2011;27(6):874–6.

30. Komarov I, D’Souza RM. Accelerating the Gillespie exact stochastic
simulation algorithm using hybrid parallel execution on graphics
processing units. PLoS ONE. 2012;7(11):46693.

31. Komarov I, D’Souza RM, Tapia J. Accelerating the Gillespie τ -leaping
method using graphics processing units. PLoS ONE. 2012;7(6):37370.

32. Gillespie DT. Exact stochastic simulation of coupled chemical reactions. J
Phys Chem. 1977;81(25):2340–361.

33. Gillespie DT, Petzold LR. Improved leap-size selection for accelerated
stochastic simulation. J Chem Phys. 2003;119:8229–234.

34. Amara F, Colombo R, Cazzaniga P, Pescini D, Csikász-Nagy A, Muzi
Falconi M, Besozzi D, Plevani P. In vivo and in silico analysis of PCNA
ubiquitylation in the activation of the Post Replication Repair pathway in
S. cerevisiae. BMC Syst Biol. 2013;7(1):24.

35. Besozzi D, Cazzaniga P, Pescini D, Mauri G, Colombo S, Martegani E. The
role of feedback control mechanisms on the establishment of oscillatory
regimes in the Ras/cAMP/PKA pathway in S. cerevisiae. EURASIP J
Bioinform Syst Biol. 2012;2012(10).

36. Cazzaniga P, Nobile MS, Besozzi D, Bellini M, Mauri G. Massive
exploration of perturbed conditions of the blood coagulation cascade
through GPU parallelization. BioMed Res Int. 2014;2014. Article ID 863298.

37. Intosalmi J, Manninen T, Ruohonen K, Linne ML. Computational study of
noise in a large signal transduction network. BMC Bioinforma. 2011;12(1):
1–12.

38. Pescini D, Cazzaniga P, Besozzi D, Mauri G, Amigoni L, Colombo S,
Martegani E. Simulation of the Ras/cAMP/PKA pathway in budding yeast
highlights the establishment of stable oscillatory states. Biotechnol Adv.
2012;30:99–107.

39. Petre I, Mizera A, Hyder CL, Meinander A, Mikhailov A, Morimoto RI,
Sistonen L, Eriksson JE, Back RJ. A simple mass-action model for the
eukaryotic heat shock response and its mathematical validation. Nat
Comput. 2011;10(1):595–612.

40. Chellaboina V, Bhat SP, Haddad WM, Bernstein DS. Modeling and
analysis of mass-action kinetics. IEEE Control Syst. 2009;29(4):60–78.

41. Jackson KR. A survey of parallel numerical methods for initial value
problems for ordinary differential equations. IEEE Trans Magn. 1991;27(5):
3792–797.

42. Mathews JH, Fink KD. Numerical Methods Using MATLAB. Upper Saddle
River: Prentice-Hall Inc; 2004.

43. Thohura S, Rahman A. Numerical approach for solving stiff differential
equations: A comparative study. J Sci Front Res Math Decision Sci.
2013;13:7–18.

44. Gear CW. The control of parameters in the automatic integration of
ordinary differential equations. University of Illinois Urbana-Champaign.
Int Rep File 757. 1968.

45. Ben-Israel A. A Newton-Raphson method for the solution of systems of
equations. J Math Anal Appl. 1966;15(2):243–52.

46. Smooke MD. Error estimate for the modified Newton method with
applications to the solution of nonlinear, two-point boundary-value
problems. J Optim Theory Appl. 1983;39(4):489–511.

47. Bartels RH, Golub GH. The simplex method of linear programming using
LU decomposition. Commun ACM. 1969;12(5):266–8.

48. Nvidia: cuBLAS library 7.5. 2015.
49. Jones E, Oliphant T, Peterson P, et al. SciPy: Open source scientific tools

for Python. 2001. http://www.scipy.org/.
50. Nobile MS, Cazzaniga P, Besozzi D, Pescini D, Mauri G. cuTauLeaping: A

GPU-powered tau-leaping stochastic simulator for massive parallel
analyses of biological systems. PLoS ONE. 2014;9(3):91963.

51. Wilt N. The CUDA Handbook: A Comprehensive Guide to GPU
Programming. Upper Saddle River: Addison-Wesley; 2013.

http://www.scipy.org/

www.manaraa.com

Tangherloni et al. BMC Bioinformatics (2017) 18:246 Page 18 of 18

52. Weiss JN. The Hill equation revisited: uses and misuses. FASEB J.
1997;11(11):835–41.

53. Le Novère N. Quantitative and logic modelling of molecular and gene
networks. Nat Rev Genet. 2015;16(3):146–58.

54. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L,
Mendes P, Kummer U. COPASI - a COmplex PAthway SImulator.
Bioinformatics. 2006;22(24):3067–074.

55. Butcher JC. Implicit Runge-Kutta processes. Math Comput. 1964;18(85):
50–64.

56. Prothero A, Robinson A. On the stability and accuracy of one-step
methods for solving stiff systems of ordinary differential equations. Math
Comput. 1974;28(125):145–62.

57. Butcher JC. On the implementation of implicit Runge-Kutta methods. BIT
Numer Math. 1976;16(3):237–40.

58. Cumbo F, Nobile MS, Damiani C, Colombo R, Mauri G, Cazzaniga P.
COSYS: A Computational Infrastructure for Systems Biology. LNCS,
Springer, in press.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

www.manaraa.com

Reproduced with permission of copyright owner.
Further reproduction prohibited without permission.

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Reaction-based models and ODEs generation
	Data structures and CUDA memory usage
	Execution workflow and CUDA kernels
	Phase P1.
	Phase P2.
	Phase P3.
	Phase P4.
	Phase P5.
	Phase P6.

	Results and discussion
	Conclusions
	Additional files
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4

	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Publisher's Note
	Author details
	References

